Introduction:

The use of metals and the development of metallurgy are considered fundamental to the emergence of complex societies in many locations in the ancient world, but particularly in western and eastern Asia. Metallurgical technology provided copper, iron and their alloys, which in turn furnished ritual and working implements, weapons, and materials for construction. How the knowledge of and interest in metals developed in present-day China has been the subject of much speculation with the place of origin often the central topic of debate. Until fairly recently, however, little evidence could be gathered to argue convincingly that the Chinese bronze age was an indigenous affair, or one that was sparked by impetus from beyond the Great Wall.

Debates and assessments of incipient metallurgy and its consequences in the ancient western world have centered on several crucial factors: the presence of ores and the corollary existence or creation of adequate trade networks; the presence of knowledgeable local and/or itinerant artisans who knew metals and their properties; a community able to support such workers, or with a degree of social and/or ritual complexity to create a demand for metal products; the ability to create high temperature furnaces for smelting and refinement of ores and final castings. The most sophisticated metal-producing industries were located in or near the more complex societies in the Near East where these products were used for many purposes ranging from utilitarian to luxury items for use in everyday activities to solemn rituals. Such questions are not always behind the study of metallurgy in China.

Consideration of the Chinese development of metallurgy and its setting has centered on two issues: first, documentation and scientific examination of the internal development of metal technologies and second, and more recently, on the emergence of metallurgy in eastern Asia and whether any stimulus from outside was responsible for its inauguration. Examination of those issues and how they have been approached are best understood within the context of intellectual history in China more broadly and archaeological study more explicitly in the 20th and early 21st centuries.

Background: Archaeology in China:

Since the founding of the People’s Republic in 1949, we have witnessed a period when archaeology has served many functions in China: scientific, nationalistic, touristic, economic, to name a few. Since the introduction of scientific archaeology in the 1920’s, archaeological activity has followed two paths in China; historiographically oriented
Neolithic and Bronze Age archaeology and Paleolithic archaeology aimed at the study of human evolution. Because there is a common approach, some discussion follows on both.

These divisions can be found in two different bureaucratic houses in Beijing, provincial government and university offices and institutions. Although the unit that approves projects in Paleolithic archaeology appears to have a more neutral view about issuing permits, especially to Sino-foreign teams, both divisions have histories based on inherited Chinese intellectual traditions as well as those appropriated from the West. Chinese Paleolithic archaeology was strongly influenced by the French tradition of the 1920’s and 1930’s; Neolithic and historic archaeology was modeled on the field methods and philological traditions introduced both from Europe and the US. Even so, all archaeological research in China can be said to emerge from a common Chinese intellectual tradition. Whether attempting to reconstruct Pleistocene human prehistory or to explain the emergence of Dynastic China, the most fundamental issue addressed by archeologists has been to reconstruct the origin and development of the Chinese people and their civilization. That is to say, similar interests and goals drive research questions in both divisions. The strength and tenacity of those interpretive traditions should not be underestimated and must be accounted for in any research program or use of data collected in China now and probably in the foreseeable future.

The search for the origins and locations of archeological cultures has been tied to theories of cultural diffusion and migration. Traditional Chinese historiography as well as the modern Marxist model are particularistic and evolutionary and propose that Chinese civilization emerged in the Yellow River "core" and then spread to "peripheral" areas by way of political expansion and cultural diffusion over many millennia. Most Chinese archaeologists have accepted the main premise of this model. The underlying assumption is that there is a cultural norm so that major early excavations were concentrated in those areas where the archaeologists expected, or at least hoped, to verify the early histories. And still, the most prestigious and guarded research is that on the Yellow River Basin. Even in Paleolithic studies, the evolution of human Pleistocene prehistory has been sought on “Chinese” soil, and comparative studies are a relatively recent endeavor. Chinese archaeologists have very rarely gone abroad to work, although with the new policy of the Ministry of Education in 2005 that underwrites Chinese graduate students to go abroad as visiting scholars for one year, this could be changing.

Artifact and human faunal remains have been very carefully subjected to typological analysis and have been used to construct linear chronologies. That periodization coupled with stratigraphic information from excavation, are the absolute backbone of archaeological research in China today, even though they are being tested and adjusted in current projects, especially in those that make use of newly developed analytic, often technically sophisticated, methods of examination.

But, many factors have affected the field of archaeology, including material science and historical metallurgy, in China since the 1920's. The sheer volume of materials unearthed in scientific excavations in the 20th and early 21st centuries is
probably the most significant factor. Regulations on preservation of cultural remains instituted since 1949 have necessitated examination of sites disturbed accidentally, through the building of roads, buildings, dams, etc., so that most of the excavation on the Mainland is selavage work. Because this approach does not allow for study only of selected sites of known or suspected historic significance, finds outside the core area have come to light and have fundamentally affected the analysis of early China (Fong 1980: 20-34; An 1989; Faulkenhausen 1995: 198-217; Chang 1981: 156-168; Linduff 1998; 2000: 1-29; Liu and Li 2007).

In addition, since the early l980's the central government has loosened its controls on provincial and local efforts, and archaeological investigation has witnessed an increase in regionalism as a result of decentralization. Since then most provinces have developed their own teams led either by University faculty or by Museum scholars and many publish journals dedicated to presenting area finds. The officially sanctioned journals continue (Kaogu, Wenwu, Kaogu Xuebao, Kaogu yu Wenwu, etc.) with the addition of several journals that focus on regions (Southern Ethnography and Archaeology), or Provinces (Archaeology of Inner Mongolia, Sichuan Cultural Relics), for instance. Some are cleared for export, but many are not available outside of the PRC. The publication of monographs and field reports is now and will continue to be expensive and the exception frequently depends on subvention from outside sources.

The primary focus of these publications is now and presumably will continue to be the reporting of new sites and the typology and periodization of objects or the decipherment of the iconography of decor. These typologies are the basis of geographic and temporal definition of “cultures” in China today. Occasionally articles that review or apply alternate methods and theory appear, and hopefully this will develop into genuine debate in print and in conference settings. Now, of course, knowledge of this material reaches a wide audience in the East as well as the West and increasingly articles by non-Chinese nationals are published in those journals and in conference proceedings. How to interpret the new material and its implications for Chinese history has met with much more interest and controversy than discussions of method and theory.

With the archaeological fieldwork conducted in the last twenty-five years, perhaps the single most challenged notion about the formation of early Chinese culture has been whether it emerged in a unilinear fashion, from a single core which developed in the Central Plain and spread from there to other parts of Asia, or otherwise. Most current research suggests that "otherwise" is the more plausible explanation. Many questions follow from the new data. Along with late 20th century efforts in the PRC to maintain a unified nation, archaeological investigations have been useful when they studied areas where ancient minorities might be traced. More recently, when the mononuclear theory necessarily weakened as more and more diverse materials were unearthed, a regional paradigm has been proposed (Zhang 1986; Lin 1986; Wu 1985). Using Su Bingqi’s regional model some (Zhang 1986) suggest that among the many goals of Chinese archaeology, the search for the origins of the "Hua", or the ethnic Chinese, as well as for the ancient minorities is especially worthy. But what and who contributed to Chinese culture are questions that strike deep into nationalistic, as well as ethnic sentiments. For
instance, the most recent attempts to ‘regularize’ the chronology of early dynastic, or Bronze Age, China engaged over 200 Chinese scholars and produced a well-informed, but consistently unilinear, chronology (XSZ 2000). And, whatever the nature of one's interpretation of culture and its formation and change, the point or points where such questions could be tested have not until very recently been identified archaeologically.

Because selvage recovery has been, and presumably will continue to be, the norm for Neolithic and historic archaeology, those regions that are most prosperous or where new roads, housing, or nationally designated projects such as the Three Gorges Dam project are undertaken will be where most new information will be yielded. Surely south and south-central China will see increased archaeological activity as a result of the booming economy there. Even so, we will probably not see a de-emphasis on research on or in the Central Plain, but unless unexpected prosperity reaches the region, few new large-scale projects will be initiated there soon without outside funding.

An exception to activity centered on selvage recovery will be that provided by Sino-foreign projects (Murochick 1997). In the 1990’s a few Sino-foreign teams began to conduct problem-oriented research that spans the Bronze Age (Liu 1996; Underhill et al. 1998; Linduff et al. 2002-04). These regional surveys and test excavations have focused on the reconstruction of human behavior. This is a significant shift in emphasis, but one in which previously developed typologies and chronologies often play a significant role. Both new methods and theory, particularly those developed in North America since the 1960’s, including computer technology, are of great interest to mid-career and younger Chinese archaeologists and have allowed real cooperation to develop. Experimentation and use of newly created collaborative methods inside of China is underway (CICARP 2003).

Emphasis on the context of human behavior has allowed some increased interest in systematic collecting and testing of information on environment, climate, ecology, animal and plant evolution, and so forth, although increasingly the data are integrated into studies of overall patterns of behavior in some regions (For e.g., see Li 2006). Hopefully this will draw together scientists such as geologists, zoologists, and so forth, and allow for greater emphasis on collecting, preserving and analyzing data relevant to lifeways. Technical studies on materials, such as those on metals and ceramics, on the other hand, do take place with some regularity and are quite telling in relation to the activities of communities in many regions.

The possibility of attracting attention to the exotic or spectacular in order to gain national or provincial recognition or tourism for much needed financial support has been continued to be supplied by focus on excavation of burials of elites. This coupled with the traditional interest in verifying histories written by and about elites has not encouraged systematic analysis of whole populations. And, the increase of familiarity with Chinese excavations has, unfortunately, also fueled collectors’ desires for Chinese artifacts and provided looters as well as copyists a ready market. Illicit trade in Chinese artifacts has reached unparalleled heights in the past decade.
Although many young Chinese scholars have gone abroad to pursue professional training, not all have returned to conduct research and teach at universities. Although courses on “western” theory and ancient “civilizations” have been taught in Chinese universities for almost two decades now, very few written or actual artifact sources on materials from outside of China are available for study. Those who have or will in the near future return to China have the potential to make a major impact on the field and its direction. What the influence of “foreign” thinking will have long term will depend on many factors: the political climate, the economic demands, foreign policy, interests from the private sector in China, and the level of funding available for such undertakings. Likewise, those who train in archaeology with emphasis on China and perhaps metallurgy in universities outside of China find few jobs available to them.

Limited access to Chinese data in the past due to political, linguistic, and even cultural barriers has heightened the desire to know especially among archaeologists outside of China. Interest in comparative data from China from all periods has been and will certainly continue to be high among archaeologists working in other areas of the world. Likewise, as access to the Internet and printed matter from inside and outside of China continues to grow, exchange of ideas and information will necessarily follow at an even greater speed. The doors are open and little except the force of tradition will prevent change in the field.

The Study of Early Metallurgy in China:
Most studies of incipient metallurgy focused only on fully developed phases dating from the second millennium BCE. There is no question that by the early dynastic period in China, or no later than the Shang Dynasty (c. 1550-1050 BCE), the ancient Chinese had already considered technological options and made technological choices about metals (Barnard 1961, Gettens 1967; Barnard et al. 1975). They preferred bronze for use in ritual to either silver or gold, even though resources for both were close at hand (Bunker 1993, 1994a, 1994b; So and Bunker 1995; Linduff et al. 2000: Map 8, p. 277). They had developed a very sophisticated piece-mold system of casting, understood the properties of metals, and used their knowledge in the alloying process. A prescriptive bronze industry was highly developed at that time and was supported by patrons of the political and social elite.

The bronze items produced were used in rituals that paid reverence to ancestors, including the recently deceased, and were often placed in elaborate burials. As signs of political and/or social position and wealth associated with it, such metal items are unmistakable evidence of social inequality in the already highly stratified society of the late Shang period. Metal farming implements as well as tools are absent from the archaeological record of the Shang period, for instance, further confirming the exclusivity of the technology and highlighting its restricted use. This dedicated role for metal production and its resulting artifacts mark late Shang society in the Central Plain as well as elsewhere (Sichuan for instance) where large production centers have now also been found. This is unusual among ancient world cultures, for in Mesopotamia, for example, metal items served multiple purposes including utilitarian ones.
But this late Shang bronze industry was not a primitive stage in the development of metallurgical technology; it was simply the first one documented in East Asia. Research on ritual bronzes and the implications of their use among the Shang have been refined over the years since the discoveries were first made in the late 1920's, but questions about where and how metals were used and about how and where the technology developed prior to that period have suffered from lack of information from excavated contexts. This situation has changed in the past two decades. More than seventy sites that can be dated either by C14 and/or by archaeological context earlier than 1500 BCE have been published (Linduff et al. 2000: Table II, pp. 355-384). These published sites yielded metal artifacts and/or metal production materials such as crucibles, or slag, and so forth. (Linduff et al. 2000: Tables I and II, pp. 322-384) Analysis of the data, including the metallurgical content of many items, casting technology, as well as the types and uses of metal artifacts in the period from about 3000 to 1500 BCE leads to some surprising observations about the advent of metallurgy in eastern Asia and about its role and development in complex society.

Recent syntheses that investigate early China usually now view the archaeological landscape during the fourth millennium BCE as a mosaic of regional groups that interacted with each other (Chang 1986). When dealing with the period of early metal use however, most Chinese archaeologists have accepted a traditional model which regard the Central Plain of northern China as the dynamic center of social, political and technological change and propose that complex societies emerged in Asia through a process of interaction with the Yellow River Basin (BUIST 1981; An 1993; Linduff et al. 2000: Map 1 and I.2, I.3, I.5, I.9). The elevated position of metal artifacts as well as the highly specialized and sophisticated multi-piece mold technology developed to produce them in early Chinese society has fueled the assumption/conclusion that the commencement of metallurgy in East Asia was to be found inside the early Chinese cultural, and/or even the political, sphere (BUIST 1981; An 1993; Barnard 1987, 1993). Now this conclusion is being challenged because there is adequate information to show that metal artifacts, in at least one other area, to the west of the Central Plain, were locally produced in enough volume to confirm its regular use. (An 1993; Mei and Shell 1998; Mei 2000; 2003a; Linduff et al. 2000: Maps 1 – 4, I.2, pp. 1-29; Liu and Li 2007) In addition, the types of objects found in this region as well as the component percentages of metals in the mix do not correspond to bronze types and alloying formulae found in the Central Plain (Linduff et al. 2000: Table I, II.10; Sun and Han 1997).

From these recently excavated and reported sites where metal artifacts have been reported dating prior to 1500 BCE, we can see that one of the most striking, as well as usual, additions to late Neolithic village life in northeastern Asia was the beginning of the use of metals. Cultures where metals (including copper as well as alloyed metals) were first used and manufactured are located across a large area from the west, across the northern frontier, to the eastern seaboard in and to the north of what has been traditionally been called ‘China proper.’ The growth of the industry did not solely, or even primarily, occur in the Central Plain associated with early dynastic China, but in several regions (Linduff et al. 2000: Map 1). Moreover, preliminary observations on the process by which and the places where the
technology developed as well as the role of metals and metal objects in these societies suggests that whereas each locus was quite distinct culturally even during the early dynastic period, they were also probably interconnected.

Scientific examination of metal artifacts dating prior to 1500 BCE has been playing a major role in the study of early metallurgy in China. Leadership in this arena has been consistently provided by the Institute of Historical Metallurgy and Materials (IHMM), University of Science and Technology Beijing (USTB), first under the direction of Ko Tsun, Han Rubin, Sun Shuyun and now Mei Jianjun. Although research interest in the development of ancient metal technologies appeared in China as early as the 1920s, the history of metallurgy as a discipline became established only in the mid-1970s, when Ko Tsun and a small group of scholars (Archeometallurgy Group) from several different institutions in Beijing initiated a series of research programs on ancient Chinese metallurgy, including the first systematic scientific investigation of early copper and bronze artifacts recovered in the present-day China. The mid-1980s witnessed the introduction of training programs for graduate students in the history of metallurgy, an important step that brought in young generations of scholars who have now become active in the field in China. While the science-oriented research approach has become widely adopted and has been making substantial contributions to a new understanding of early metallurgy in China, the need for an interdisciplinary approach that would combine social, anthropological and scientific perspectives has become increasingly obvious. A new trend is emerging to emphasize the examination of early Chinese metallurgy within its social and cultural context and exploration of relationship between early metallurgy and social complexity.

The Evidence:

The earliest sites that have yielded metal objects date to the late fourth and third millennia BCE (Linduff 1997:306-418; Mei 2000). Quite early metal-using communities are found in Qijia/Siba sites in Gansu, with comparable sites in Xinjiang in the west, and others in Shandong, Liaoning and Inner Mongolia in the east and north, and in the Central Plain in the lowest levels at Erlitou. Because several levels of excavations are C14 dated and those dates have been matched up to ceramic types and styles, chronologies are more secure. An approximate chronological correspondence between the sites in the eastern Eurasian steppe and China is now clear, and suggests that the emergence of metallurgy was supra regional (Linduff et al. 2000:1-28).

Analysis of the data, including metallic composition, casting technology, as well as types and uses in the period from about 3000 to 1500 BCE has evidence of the use of metals in late Neolithic in northeastern Asia as far east as the Russian Far East. Sites where metals (including copper as well as alloyed metals) were first used and manufactured are located across this large area, showing that the growth of the industry was not confined to the Central Plain. Moreover, preliminary observations on the process and patterns of use of the technology are both shared and diverse such as at Siba and Erlitou (Sun and Han 1997).

Areas in China where metallurgical knowledge was in use emerged near ore sources of metals, especially copper in several combinations (Barnard 1993:3-48;
Barnard 1987:3-37; Linduff 1997; Linduff 1998: 619-643). For instance, arsenical bronzes produced in Gansu at Siba sites must have been manufactured by exploiting local arsenical copper resources still available in present-day Gansu. All areas developed a taste for items made from ‘pure’ copper and copper alloys, and gold items have been found in the northeast and northwest China. Trumpet-shaped earrings, for instance, have been found all over eastern Eurasia and northern China and were made from copper, tin-bronze as well as gold and silver according to the local preference and show a clear regional choice, unlike that in the central Yellow River Basin where the earliest Chinese states were located (Liu and Chen 2003: 80-81). The lack of consistency in formulae suggests that that knowledge was gained from several sources and not through local invention (Sun and Han 1997; Mei 2003a; 2003b).

Areas where metal objects were recovered stretches across an area from the west, across the northern frontier (of early dynastic China), to the eastern seaboard and these are dated from the third and early second millennia BCE.

These are:

1. **Area I**: The **Qijia** culture (c. 2500-1900 B.C.) of Qinghai, Gansu and western Shaanxi has yielded copper and bronze utilitarian items and gold, copper and bronze personal ornaments. The earliest dates for metal in this region are found at a Majiayao site at Linjia, Dongxiang, Gansu (KGXB 1981). "Copper" (analyses of metal knife and awl showed 99% copper with impurities of lead, tin and so on of less than 0.4%) implements including knives, chisels awls and rings and in one site a mirror (at Gamatai in Guinan, Qinghai) were unearthed in several sites (KGYW 1980).

2. **Area II**: at **Zhukaigou**, (Levels 3, 4, and 5; c. 2000-1500 B.C.) in south-central Inner Mongolia, has yielded copper, bronze and bone weapons and tools typical of both the Central Plain and the Steppe cultures (both Andronovo and Karasuk) (KGXB 1988).

3. **Area III**: the **Lower Xiajiadian** culture (c. 2000-1600 B.C.) in eastern Inner Mongolia, Liaoning, northern Hebei produced highly specialized pottery and walled villages as well as copper and bronze utilitarian tools and personal ornaments which parallel those of the Andronovo culture (**KG** 1978; Zhang 1986).

4. **Area IV**: **Erlitou**, Henan, in the Central Plain (Phases 3 and 4; c. 1750-1530 B.C.) is exemplified by bronze tools, weapons and piece-mould vessels, jade ritual materials as well as walled villages.1

5. **Area V**: the **Yueshi** culture (c. 2400-1600 BCE)2 in Shandong yielded bronze and brass utilitarian items including nose rings, but larger than those from Huoshaogou in Gansu (Linduff et al. 2000: I.6; Xu 1989).

The archaeological record suggests that at the critical, proto-dynastic period in the late third and early second millennia B.C., all these cultures were at a similar level of societal development. Those outside of the Central Plain were producing both worked and simple cast objects on a small scale (Linduff 1998). These sites locate the use of

2 Reported in **WW** 1981 (6), 43; **Kaogu yu Wenwu**, 1984(1), 92-99 where it was dated to the late Xia or early Shang Dynasty.
metal working (Areas I, II, III and V) and casting (all Areas) as well as regionally specialized ritual materials all at about the same time. With this evidence the possibility that metal technology was introduced to the Yellow River Basin must be considered, while maintaining the possibility that the elaborate piece-mould casting methods used to cast ritual vessels in the Shang Dynasty may likely have developed independently in the Central Plain.

The appearance, but also the demise of these metal-using communities outside of that in Dynastic China is also a great dilemma. The type of social complexity at Areas II and III worked against their emergence into ranked, hierarchically ordered societies such as developed in the rich agricultural lands of the Central Plains. Their economies likely did not collapse, but rather were recast by increased dependence on pastoralism in Area II (Indrisano 2006) and hunting, trapping and pig farming in Zone III (Shelach 1994, 1999), thus dramatically separating their lifeways from that of the Chinese agriculturists.

Implications of the Data:

Taken together these sites locate a broad area across northern East Asia where the beginnings of metal use can be located and dated at about the same time. All areas where metallurgy emerged were near ore sources of metals, especially copper in several combinations (Linduff et al. 2000: Maps 5 - 8). For instance, the distinctive arsenical bronzes must have been manufactured by exploiting local resources that are still available in present-day Gansu. (Linduff et al. 2000: Map I) Although each area developed a taste for items made from copper and copper alloys, gold items have been found only in the northeast and northwest. These gold items (earrings and nose ring) are only occasionally found, and may be imports, valued perhaps for their rarity, or they may have been manufactured locally and used because of their form to signify group affiliation. The earring (including nose rings) types were known in far greater numbers made from copper and bronze, and especially in Qijia and Siba sites in Area I.

The makeup of each culture area, even in this preliminary survey, belongs to a distinctive archaeological culture identified by its pottery and speculated upon by some according to ethnicity (Linduff et al. 2000: I.9, II.10). In all regions the economy is mixed; excavated villages have yielded evidence of both cultivated crops and domesticated animals, as well as the continued practice of hunting with improved arrowheads made of bronze. Many early copper products show an uncanny resemblance to each other across the Northern Corridor--from Gansu, to Lower Xiajiadian in the northeast, to Yueshi in the Shandong Peninsula. Metal ornaments and simple tools seem not to designate rank in any of the sites outside of the Central Plain as, for example, in burials at Huoshaogou where metal items are included in most burials. That is to say, the material of their manufacture is not noticeably restricted as it is in sites associated with dynastic China throughout the mid-second and first millennia BCE.

The presence of comparable bronze tools and many other shared traits mentioned above suggests, nevertheless, that there was a network of some type, however loosely connected. As part of a network, those outside may have contributed to development of state-level society in the Central Plain (oracle taking, for instance, or more substantively through interdependent economic systems) (Shelach 1994; Linduf 1998) rather than
merely acting as passive receivers of metallurgical technology and other features of complex society from the Central Plain as has been suggested in the past. They are linked through comparable artifact types and by shared metallurgical technologies not easily transmitted without movement of craftworkers or even larger groups of travelers.

The expansion of the metal tool-kit and the production of it in alloyed metals in the early second millennium BCE in Gansu and the surrounding area did not witness an intensification of its use as a political marker as was the case with bronze items produced and buried in the Central Plain, but perhaps as a cultural identifier. The consistently local character (pottery types and styles) of sites, as well as the appearance of metal items with affinities to cultural debris of Bronze Age southern Siberia, suggests that there was movement into the Gansu Corridor of newcomers who were possibly horse-herding (Anthony 2007), but certainly bronze producing peoples of Andronovo background (Peng 1998; Mei and Shell 1998; 1999). It is also worth noting that movement of groups along a north-south path must also be considered as such movements are still very much part of life on the Eastern Eurasian steppe today (Olsen personal communication). Among those eastern Inner Eurasian peoples animal sacrifice also signified status and/or leadership in burial and metal items included tools, weapons and personal ornaments associated with individuating societies, not with one whose symbol system was used to identify all members of the same political unit as exemplified by the use of the bronzes at Erlitou.

Still, the best-known cultural trajectory is the one at Erlitou and its surrounds. The sophisticated bronze industry was apparently the exclusive commodity of the elite and developed along with the emergence of social complexity and ritualized social hierarchy (Chang 1980). This development is already apparent in the second millennium BCE where status-based and role-related social decorum operated in the religious, social, and political spheres (Keightley 1990:42) and demanded the production and use of the ritual items such as vessels and weapons cast out of bronze as at Erlitou. They experimented with metals in the region in the late third and early second millennium BCE, but by about 1750 BCE they were on a different track from the cultures to their northeast and northwest. The emergence of state-level society no later than the Shang was synonymous with bronze production. Where the advanced methods of piece-mold casting were invented is yet to be determined, but their restricted use of alloyed bronze was apparent from at least as early as the sites at Erlitou, Henan.

In places outside of the Central Plain, the story is different, and the archaeological record is beginning to clarify those differences. Each area experimented with metal use at the household level well before 1750 BCE. Each area made artifacts from copper or bronze of comparable shape and style for utilitarian or decorative use; and each followed its own local historical path. The Shandong peninsula contributed to and finally was absorbed into the Chinese dynastic society in the second millennium BCE. The cultures in the northeast region continued a sedentary lifestyle and increased independent bronze production substantially after about 1000 BCE. In the northwestern region, the local cultures called the Qijia and Siba were seemingly more connected with cultures to their own west, never established centrally managed state-level societies, and remained outside of the Chinese cultural and political dynastic arena until the Qin conquered these lands in
about the 5th century BCE. This area seems not to have been inspired by the Central Plain about bronze metallurgy or much of anything else detectable in the archaeological record. Their knowledge of horses and of certain metal tools were eventually probably imported into the Central Plain.

The communities in these four areas are all late Neolithic agricultural communities, but their economic strategies, social organization, probably their political systems, and surely their ideologies differed. Some, especially those west of the Wei River, gained much greater benefit from their western neighbors who inhabited the plains of eastern Inner Eurasia than from the Chinese dynasts to their east and remained outside of Chinese political control and even their cultural sway for centuries following.

China and Eurasia:

Because little was documented to suggest an earlier phase of metallurgy and because of the prevalence of a diffusionist model of explanation among western scholars, knowledge of metals in regions east of the Caucasus has most often been explained by proposing a route of transmission from the Near East across Russia to the Far East. Two possible routes have been suggested: the Northern and/or a Central Asiatic. Both routes were thought to have begun in the Anatolian-Iranian area and either traversed the Caucasus across the Eurasian Steppe, or from Iran up to the Amu-Darya and over the Tianshan Mountains to Kashgar (Tylecote 1992: 14). Such diffusionist theories rested on the chronology of the Near Eastern sites. The lack of reports on early use and manufacture, and the limited availability of reports written only in Russian and Chinese have hindered reliable testing of the diffusionist model.

Among Chinese and Russian scholars, study of the industry and proposals about who initiated the movement of ideas have been affected by mutual lack of information because of language barriers, but especially because of political borders and nationalistic sentiments. The now-dated debate between Profs. B. Karlgren and M. Loehr presented judgments on the direction of transmission for the technology, for example, based on analysis of style of artifacts and the manner of its transformation across time and space (Karlgren 1945; Loehr 1949a, 1949b). Their arguments, Karlgren as the champion of China and Loehr of Siberian cultures as the primary source for certain artifact types and ultimately for the technology itself, were mounted at time when excavated, tested and dated materials earlier than about 1250 BCE were lacking from both sides. And although archaeologists and metallurgists have questioned the diffusionist model, this view and others are now being reassessed in light of new archaeological information (Mei 2003a; Liu and Li 2007).

The translation of Yevgeny Chernykh's text on the early metallurgy in the USSR has allowed access to readers of English to excavated materials from the territories between the Near East and central Siberia (1992). In addition, better and more complete reports on copper- and bronze-using as well as mining sites in Russia, especially those east of the Ural Mountains such as Arkaim and Sintashta-Petrovka (Gening et al 1992; Chernykh and Kuzminykh 1989) and Kargaly (Chernykh 2002-2007) and from northern East Asia dated to the third millennia BCE are also available, still largely in the local
languages (Linduff 1997; Chase and Douglas 1997). Not only do such reports suggest that there was contact between cultures of the eastern Eurasian steppe and China, but also that the beginnings of bronze metallurgy in this part of the world was regional and took direction according to its host culture and the local demands for its use. Wide-ranging studies on the process of this development are still rare (Barnard 1983, 1987; Linduff 1997, 1998; Linduff et al. 2000:1-28). These studies do not allow independent evaluation of the sources, however, by those trained either outside of Chinese area studies or in metallurgy.

The Chinese preoccupation with the notion of the primary role of the Central Plain to the emergence of Chinese civilization (An 1989; Chang 1977; Chen 1988; Olsen 1987; Faulkenhausen 1993) is apparent still even though it is also clear that there are many early, precocious metal-producing sites outside the area considered as the homeland of the dynastic Chinese. This struggle has an extensive and very well argued history in Chinese scholarship, making long held mononuclear notions about the rise of Chinese civilization not only hard to change, but also striking when the view is challenged. For example, An Zhimin's 1993 article suggesting that there may have been multiple centers where the experimentation with metals took place was a landmark in Chinese scholarship. This well-established leader of the archaeological community in China joined other, earlier speculations on the matter but it was his voice that was widely heard. The introduction of sophisticated methods of scientific examination of the composition, structure and sources of metals has added yet another, very powerful analytic tool to the study of early Chinese technology.

Another problem has vexed Chinese archaeologists as they excavated and published early materials--the question of dating. Of central concern to archaeologists in China as elsewhere, the use of carbon-dating and the calibration of these dates has revolutionized methods of dating formerly based entirely on stratigraphy and the development of ceramic, or other, diagnostic typologies. The combination of these two methods is now in use in many locations in China and yields evidence of periodization that can be more confidently accepted and compared to other areas of the world. In some cases these newly calculated Chinese dates have necessitated a reevaluation of those metal-producing sites across its borders in Russia (Mei 2000; 2003b). A collection of essays, Bibliography, lists of calibrated C14 dates, and Maps have made available some important papers and data, but much was not covered in that text (Linduff et al. 2000). Work on mining, for instance, brings data to the discussion that was all but missing before the mid 1980s (Hua 1986, 1987, 1991; Li, et al. 2007).

This region of eastern Eurasia is linked through comparable artifact types, by closeness to ores, and by shared metallurgical technologies not easily transmitted without movement of craft workers or even groups of travelers. The consistently local character of pottery types and styles in sub-areas, as well as the appearance of metal items with affinities to cultural debris from Bronze Age southern Siberia, suggests that there was movement into the area of western China, likely bronze producing peoples from eastern Kazakhstan and/or Transbaikalia (Shui 1993; Chen and Hiebert 1995; Mei and Shell 1999). Although animal sacrifice signified status and/or leadership in burial and metal
items included tools, weapons and personal ornaments associated with individuating societies in the region of Gansu, metal items ultimately were used to identify only elite members of a centralized political unit at Erlitou in the center of early dynastic China. As Kuz’mina suggests (2003) the appearance of wheeled transport, metallurgy and use and/or breeding of horses signal not only movement of ideas, technology and perhaps peoples, but also significant societal change, and often lead to a more complex social order. This process may or may not characterize the village settings in western and northern China (Linduff et al. 2000:1-29), but changes in social complexity are clearly identifiable in and around Erlitou in the Central Plain.

And, this change evidenced for the earlier to middle second millennium BCE was not a one-time affair. That was not the only period of interchange between the peoples of western China and points west. Continued stimulation, moving in both directions, can be witnessed in the later second and early first millennia BCE. Nor are the border regions of present-day western China the limit of that exchange system. Both local pottery and early metal artifacts suggest that knowledge of metallurgical traditions and artifact types extended into northeastern China and into what is now the Russian Far East.

Nevertheless, when considering the advent of metallurgy in the late fourth and third millennia BCE, all the criterion of the EMP defined by Chernykh are found in the “Chinese” contexts. If separated from modern nationalistic and centric views of ancient culture and considered as part of a larger metallurgical context, even the multi piece-mould casting method developed in the early second millennium BCE at Erlitou, thought of as a hallmark invention of early dynastic China, may be seen as a local technological variation within the easternmost Eurasian territory made for specialized ritual use (Linduff 2004).

The Future

It is clear that more work needs to be done before analysis of metallurgy and societal change can be productively carried out. A few suggestions follow:

Further regional analysis needs to be done, including multi-dimensional study of communities including excavation of habitation sites, hopefully production sites as well as mines, etc. The regions studies would benefit from expansion to a more concentrated analysis that includes southwestern and south central China, which is not studied well and could be important to further analyses. Connections with southeast Asia are just beginning to be investigated systematically (Piggott and Ciarla 2007).

More intensive technological analysis would add immeasurably to the discussion. Both metallographic and compositional analysis could lead to discussion about where and how alloys were produced. Especially problematic is the fact that technical data on excavated materials produced in the Central Plain are largely absent. These data are essential to any study in East Asia. Although scientific examination of dozens of bronze objects excavated at the Erlitou site, for instance, has been completed, the results have not yet been published as the excavation report is still under preparation. The major alloy types of the Erlitou metals include Cu-Sn and Cu-Sn-Pb, though there are a small number of artifacts made of Cu-As, probably an indication of connections to other regions. Generally speaking, the Erlitou bronze industry is slightly later than what we have seen in
northwest China. So, evidence for the existence of some borrowing from northwest and north China in the Central Plain during the Erlitou period is becoming strong, but this is not yet decisive or adequately documented. Regional interaction needs to be documented as well, especially from several distinctive regions including the Central Plain, Gansu-Qinghai, Xinjiang, and the Northern Zone.

In addition, perhaps one of the most intriguing questions yet to be addressed systematically is about the invention of **piece-mould casting methodology**. We need to examine this issue from both technological and socio-cultural angles.

More **study of mining and ores** would allow a more firm understanding of sources and the relationship between trade and interaction with the emergence of societal complexity. Although we suspect that in all the metal production regions local mineral resources existed, we cannot deny the importance of interregional trade networks. Some hard evidence for mining has been located in recent years. Last year, for instance, an early mining site (Lower Xiajiadian period?) was discovered in Inner Mongolia, and analytical work is now being carried out on the data from that site. Similarly, also last summer, two early smelting sites (second millennium BCE) were discovered at unexpected locations in the Hexi corridor in Gansu. The discovery has raised questions concerning the organization of early mining and smelting activities, as one site is located in the desert, almost 100 km away from the Qilian Mountain where the most-likely source for the metal ores is located. This suggests that it may become increasingly important to look at the societal context of early metallurgy since it is likely that early communities in the Hexi Corridor were village level societies and could presumably only support metallurgical activity on a relatively small scale.

If as more and more sites are excavated, greater **information on soil, on animal life, on diet, on regional patterns including economic, political, and social organization** were gathered, analysis of the data could lead to more firm explanations for cultural interaction, trade, as well as for the function of metal products and their production in society.

In contexts where manufactured metal artifacts have been found in China, excavated villages have yielded evidence of both cultivated crops and domesticated animals, as well as the continued practice of hunting with improved arrowheads made of bronze, especially in the northeast. Chernykh’s fanciful speculation that the Seima-Turbino was formed through a fusion of metallurgists and warrior horse-riders of the forest zones of the Altai and eastern Siberian taiga mobile hunters (1992), he claims, is supported in the recent excavations of the village at Gorny (Chernykh 1998), Kargaly (Chernykh 1997; 2002-7), and many others including Arkaim and related sites (Zdanovich 1997). Located close to vast resources of ores in the Urals, these excavations reveal that isolated groups of miners and metallurgists worked in specialized communities for many generations supplying patrons across western, and possibly eastern, Eurasia. In China’s Central Plain, with the emerging ruling class, state level society and the ritual significance given to alloyed metals, the network included not only the regional importation of metal ores, but also salt (Liu and Chen 2003: 80-81), and supported a very specialized metal industry.
that developed quite differently and perhaps independently from those communities/polities in areas to the north, northeast, and west of ancient China (Linduff et al. 2000). Those outside of the Central Plain emerged perhaps in concert with, however, interactions with eastern Eurasia.

Therefore, in considering the directions for future research, three points may be emphasized: first, technological analysis is basic and should be carried on, with a greater emphasis on the samples collected from production sites, including slag, ores and furnace materials. Comparative studies based on analytical data should be done in order to characterize the regional technological features, which could be used as evidence understanding the pattern of contacts or interactions between various regions. Second, regional analysis may include an examination of socio-cultural context for metallurgical production, such as ceramic production, ritual preference, burial custom, religious tradition, artistic choice, and so on. More attention should be paid to explore how early metallurgical activities were organized and what they contributed to the increase of social complexity. A combination of technological and archaeological approaches will be necessary. Third, local innovations and long-distance contacts are two vital issues that are worthy of in-depth exploration by employing an interdisciplinary approach. Several important early metallurgical innovations have been noted, such as piece-mould casting, arsenical copper, leaded bronze, decorated mirrors, but how they emerged and developed still remain unclear and required further research. If these issues were examined within a wider Eurasian context, the contributions from both local innovations and outside impetus could be properly highlighted. It is important to understand the scale, patterns and mechanisms of early interaction, including trade and exchange, movement of people, as well as community conflict.

Furthermore, as western research approaches as well as theoretical thinking continue to be introduced into China, academic discussion and debate among scholars will be stimulated. Much more is still to be learned and close collaboration and academic exchange between Chinese and other scholars should and is being encouraged.
Bibliography Cited

KG (Kaogu) 1978.1, 23-34.

KGXB (Kaogu Xuebao). 19 3, 287-301.
KGXB (Kaogu Xuebao), 1988 (3), 322-331.
Mei, Jianjun and Colin Shell 1998. “Copper and Bronze Metallurgy in Late Prehistoric Xinjiang”, V. Mair, (ed.), The Bronze Age of Early Iron Age Peoples of Eastern

Sun, Shuyun and Rubin Han 1997. “Study of Casting and Manufacturing Techniques of Early Copper and Bronze Artifacts found in Gansu.” *Wenwu* 7, pp. 54-84.

